APPENDIX G

Fluvial Geomorphology

For figures, tables, and text from Rosgen applied to this portion of the study, especially pages 5-6, 6-29, 6-30, and 8-9, refer to: Rosgen. D. L. 1996. Applied River Morphology. Printed Media Companies, Minnesota.

Definition of Terms for Pebble Counts Made in the Long Creek & Red Brook Watersheds

Category Observed in

the Field Abbreviation Approximate Size Class* 0.0380 cm Sand SA Fine-Sand/Silt/Clay mix SC $\sim 0.0100 \text{ cm}$ Clay (solid) ~0.0050 cm Bedrock BR Don't use to calculate mean particle size, but do use in particle-size-distribution

discussion

Note: Because pebble counts were used as the field technique to characterize the substrate of these streams, as opposed to doing sieve analyses of stream bottom materials, these general definitions were used to categorize basic types of materials encountered in the field.

^{*}Mean particle size for specified category, as defined in Rosgen 1996

LC-M-0.603

Cross-Section
-Long CreekMain Tributary
Above Foden Rd.
Not Q Site

The y- axis scale is 3 times that of the x-axis.

Bankfull Height
Water Level

LC-Mn-2.274

Cross-Section
-Long CreekMain Tributary
Goodyear

The y- axis scale is 3 times that of the x-axis.

Bankfull Height

··· Water Level

LC-Mw-2.896

Cross-Section
-Long CreekMain Tributary
below RWS

The y- axis scale is 3 times that of the x-axis.

____ Bankfull Height

···· Water Level

LC-N-0.595

Cross-Section
-Long CreekJetport Tributary
Above Foden Rd.

The y- axis scale is 3 times that of the x-axis.

RB-2.119

Cross-Section
-Red Brook-Lion's Club

The y- axis scale is 3 times that of the x-axis.

The water elevation is not available for this site.

_____ Bankfull Height

Water Level

RB-3.961

Cross-Section
-Red BrookAbove RWS

The y- axis scale is 3 times that of the x-axis.

Bankfull Height

Water Level

Appendix G-7. Classification key for natural rivers (from Rosgen [1996]).

CHANNEL STABILITY (PFANKUCH) EVALUATION AND STREAM CLASSIFICATION SUMMARY (LEVEL III)

Reach Lo		M CLASSIFICATION SUMMARY (LEVEL III) Date Observers	
Stream T			
211221/673	Category	EXCELLENT	
UPPER BANKS	Landform Slope Mass Wasting Debris Jam Potential Vegetative Bank Protection	Bank Slope Gradient <30% No evidence of past or future mass wasting. Essentially absent from immediate channel area. 90%+ plant density. Vigor and variety suggest a deep dense soil binding root mass.	2 3 2 3
LOWER BANKS	5 Channel Capacity 6 Bank Rock Content 7 Obstructions to Flow 8 Cutting 9 Deposition	Ample for present plus some increases. Peak flows contained. W/D ratio <7. 65%+ with large angular boulders. 12"+ common. Rocks and logs firmly imbedded. Flow pattern without cutting or deposition. Stable bed. Little or none. Infreq. raw banks less than 6". Little or no enlargement of channel or pt. bars.	1 2 2 4 4
воттом	10 Rock Angularity 11 Brightness 12 Consolidation of Particles 13 Bottom Size Distribution 14 Scouring and Deposition 15 Aquatic Vegetation	Sharp edges and corners. Plane surfaces rough. Surfaces dull, dark or stained. Gen. not bright. Assorted sizes tightly packed or overlapping. No size change evident. Stable mater. 80-100%. <5% of bottom affected by scour or deposition. Abundant Growth moss-like, dark green perennial. In swift water too.	1 1 2 4 6
		TOTAL	
16.	Category	GOOD	
UPPER BANKS	Landform Slope Mass Wasting Debris Jam Potential Vegetative Bank Protection	Bank Slope Gradient 30-40% Infrequent. Mostly healed over. Low future potential. Present, but mostly small twigs and limbs. 70-90% density. Fewer species or less vigor suggest less dense or deep root mass.	4 6 4 6
LOWER BANKS	5 Channel Capacity 6 Bank Rock Content 7 Obstructions to Flow 8 Cutting 9 Deposition	Adequate. Bank overflows rare, W/D ratio 8-15 40-65%. Mostly small boulders to cobbles 6-12" Some present causing erosive cross currents and minor pool. filling. Obstructions newer and less firm. Some, intermittently at outcurves and constrictions. Raw banks may be up to 12" Some new bar increase, mostly from coarse gravel.	2 4 4 6 8
воттом	10 Rock Angularity 11 Brightness 12 Consolidation of Particles 13 Bottom Size Distribution 14 Scouring and Deposition 15 Aquatic Vegetation	Rounded corners and edges, surfaces smooth, flat. Mostly dull, but may have <35% bright surfaces. Moderately packed with some overlapping. Distribution shift light. Stable material 50-80%. 5-30% affected. Scour at constrictions and where grades steepen. Some deposition in pools. Common. Algae forms in low velocity and pool areas. Moss here too.	2 2 4 8 12
		TOTAL	
~	Category	FAIR	
UPPER BANKS	1 Landform Slope 2 Mass Wasting 3 Debris Jam Potential 4 Vegetative Bank Protection	Bank slope gradient 40-60% Frequent or large, causing sediment nearly year long. Moderate to heavy amounts, mostly larger sizes. <50-70% density. Lower vigor and fewer species from a shallow, discontinuous root mass.	6 9 6 9
LOWER BANKS	5 Channel Capacity 6 Bank Rock Content 7 Obstructions to Flow 8 Cutting 9 Deposition	Barely contains present peaks. Occasional overbank floods. W/D ratio 15 to 25. 20-40% with most in the 3-6" diameter class. Moder, frequent, unstable obstructions move with high flows causing bank cutting and pool filling. Significant, Cuts 12-24" high. Root mat overhangs and sloughing evident Moder, deposition of new gravel and course sand on old and some new bars.	3 6 6 12 12
воттом	10 Rock Angularity 11 Brightness 12 Consolidation of Particles 13 Bottom Size Distribution 14 Scouring and Deposition 15 Aquatic Vegetation	Corners and edges well rounded in two dimensions. Mixture dull and bright, ie 35-65% mixture range. Mostly loose assortment with no apparent overlap. Moder, change in sizes. Stable materials 20-50% 30-50% affected. Deposits & scour at obstructions, constrictions, and bends. Some filling of pools. Present but spotty, mostly in backwater, Seasonal algae growth makes rocks slick.	3 6 12 18

Appendix G-8. Channel stability evaluation (Pfankuch, 1975) with a conversion of the channel stability rating to a reach condition by stream type.

From Rosgen (1996).

		AND	STREA	L STA AM CL	BILITY ASSIFI	PFAI) CATIOI	NKUCH N SUM	i) EVA MARY	LUATIO LEVE)	ON (L III)		
	Catego	ry		POOF	3							
UPPER BANKS	2 Mass 3 Debr	form Slope Wasting is Jam Pote tative Bank	ntial	Freque Moder.	Slope Gradi ent or large to heavy a density, fer tinuous an	causing s amounts, p wer specie	ediment n predom, la s and less	rger sizes. vigor indi		minent da	anger of sa	ume, 1
LOWER BANKS	6 Bank 7 Obstr 8 Cutti	nel Capacit Rock Cont uctions to ig sition	tent	<20% Sedime Almost	uate, Over rock fragm ent traps fu t continuou ive deposit	ents of gra ill, channe is cuts, so	avel sizes, I migration me over 2	1-3" or le n occurring 4" high. F	ss. 3. ailure of ov	erhangs i	requent.	10
воттом	11 Brigh 12 Cons 13 Botto 14 Scour	Angularity tness plidation of m Size Dis ing and De tic Vegetati	Particles tribution eposition	Predon No pac Marked More tl	ounded in a n. bright, 6 king evide l distributi han 50% o ial types so	5%+ expo nt. Loose a on change of the botto	sed or sco assortment Stable m m in a sta	ured surfa easily mo aterials 0- te of flux	ces. wed. 20%, or change i	nearly yea bloom ma	y be prese	
and the same at		-		7.50		-					тот	AL
Stream Width _												cf
Gauge Ht	_		Reach Gr	adient		St	ream Order			Sinuosi	ty Ratio	
Width at			Depth sa_		91	w	D Ratio _			Dischar	ge (Qua)	
Drainage Area_												
Sinuosity										A THE PARTY OF	THE RESERVE OF THE PARTY OF THE	
Sundosity			rantenent	nent Rado	*	Le	ngtn Mean	der (Lm)		_ Bell Wid	ith	
Sediment Suppl Extreme Very High	***		Aggra		bility		Norm	al	itio Conditi			Stream
			Stable	0			Very 1	ligh				Type
Moderate												Pfankuch
Low				TO	TAL SCORE	for Reach	E=	G+ F	+ P	-		Rating
Remarks						_	-		fr	om		Reach
		-			-		-	X	ta	ble	I E	Condition
(ONVER	SION O	F STAB	ILITY R	RATING	TO REA	CH CO	NDITIO	N BY ST	REAM	TYPE*	
Stream Type	A1	A2	A3	A4	A5	1		0.54	1 300	1 32		T nc
GOOD	38-43	38-43			60-95	A6 50-80	B1 38-45	B2 38-45	B3 40-60	84 40-64	B5 48-68	86 40-60
FAIR	44-47	44-47	91-129	7,120,000	96-142	81-110		46-58	61-78	65-84	69-88	61-78
POOR	48+	48+	130+	133+	143+	111+	59+	59+	79+	85+	89+	79+
Stream Type	C1	C2	C3	C4	C5	C6	D3	18.50	1000	(7.296.5)	351	554
GOOD	38-50	38-50	60-85	70-90	70-90	60-85	85-107	D4 85-107	D5	D6	-	
FAIR	51-61	51-61	86-105	91-110	91-110	86-105	108-132		85-107 108-132	67-98 99-125		
OOR	62+	62+	106+	111+	111+	106+	133+	133+	133+	126+		
tream Type	10000					-	-		TOOT	ABUT	1	
GOOD Type	DA3 40-63	DA4 40-63	DA5 40-63	DA6 40-63	E3	E4	E5	E6				
AIR.	64-86	64-86	64-86	A DESCRIPTION OF THE PROPERTY	40-63	50-75	50-75	40-63				
OOR	87+	87+	87+	64-86 87+	64-86 87+	76-96 97+	76-96 97+	64-86	- 2			
2011		-		-			0000	87+				
tream Type	F1	F2	F3	F4	F5	F6	G1	G2	G3	G4	G5	G6
OOD	60-85	60-85	85-110	85-110	90-115	80-95	40-60	40-60	85-107	85-107	90-112	85-107
AIR	86-105	86-105		111-125	116-130	96-110	61-78	61-78		108-120	113-125	
OOR	106+	106+	126+	126+	131+	111+	79+	79+	121+	121+	126+	121+

Stream type	Sensitivity to disturbance ^a	Recovery potential ^b	Sediment supply ^C	Streambank erosion potential	Vegetation controlling influence ^d
A1 A2 A3 A4 A5 A6	very low very low very high extreme extreme high	excellent excellent very poor very poor very poor poor	very low very low very high very high very high high	very low very low very high very high very high high	negligible negligible negligible negligible negligible negligible
B1 B2 B3 B4 B5 B6	very low very low low moderate moderate moderate	excellent excellent excellent excellent excellent excellent	very low very low low moderate moderate moderate	very low very low low low moderate low	negligible negligible moderate moderate moderate moderate
C1 C2 C3 C4 C5 C6	low low moderate very high very high very high	very good very good good good fair good	very low low moderate high very high high	low low moderate very high very high high	moderate moderate very high very high very high very high
D3 D4 D5 D6	very high very high very high high	poor poor poor	very high very high very high high	very high very high very high high	moderate moderate moderate moderate
Da4 DA5 DA6	moderate moderate moderate	good good good	very low low very low	low low very low	very high very high very high
E3 E4 E5 E6	high very high very high very high	good good good good	low moderate moderate low	moderate high high moderate	very high very high very high very high
F1 F2 F3 F4 F5 F6	low low moderate extreme very high very high	fair fair poor poor poor fair	low moderate very high very high very high high	moderate moderate very high very high very high very high	low low moderate moderate moderate moderate
51 52 53 54 55 56	low moderate very high extreme extreme very high	good fair poor very poor very poor poor	low moderate very high very high very high high	low moderate very high very high very high high	low low high high high

a Includes increases in streamflow magnitude and timing and/or sediment increases.

b Assumes natural recovery once cause of instability is corrected.

Includes suspended and bedload from channel derived sources and/or from stream adjacent slopes.

d Vegetation that influences width/depth ratio-stability.

APPENDIX H

Water Quality Classification Standards

Information about Maine's water quality classification system can be found online at: < www.state.me.us/dep/blwq/monitoring.htm >.

APPENDIX I

Growth Projections

Popula	Population Forecasts	casts	
		Population	Pop Change
Community	1990	2020	1990-2020
Brunswick	20,906	23,987	3,081
Portland	64,157	65,561	1,404
S. Portland	23,163	24,318	1,155
Westbrook	16,121	18,907	2,786
Urban Communities	124,347	132,773	8,426
Cape Elizabeth	8,854	10,472	1,618
Cumberland	5,836	8,787	2,951
Falmouth	7,610	11,420	3,810
Freeport	6,905	9,401	2,496
Gorham	11,856	16,879	5,023
Gray	5,904	9,149	3,245
Scarborough	12,518	19,582	7,064
Standish	7,678	11,509	3,831
Windham	13,020	18,086	5,066
Yarmouth	7,862	9,951	2,089
Suburban Communities	88,043	125,235	37,192
Baldwin	1,219	1,538	319
Bridgton	4,307	6,321	2,014
Casco	3,018	4,404	1,386
Harpswell	5,012	6,118	1,106
Harrison	1,951	2,966	1,015
Naples	2,860	4,694	1,834
New Gloucester	3,916	6,134	2,218
N. Yarmouth	2,429	4,297	1,868
Pownal	1,262	1,412	150
Raymond	3,311	5,210	1,899
Sebago	1,259	1,587	328
Long Island	201	199	(2)
Rural Communities	30,745	44,879	14,134
Total Cumberland County	243,135	302,887	59,752
Source: GPCOG based on REMI Econometric Forecast	∏ Econometr	ic Forecast	
Forecast prepared in 1998			

Potential Future
Development Areas
PACTS Communities
2000 - 2025

This graphic shows potential future development areas for locations where significant office and/or retail is anticipated. Locations are general in nature. Does not reflect all development potential for communities.

Development Areas

- < 250,000 sq ft
- 250-500,000 sq ft
- > 500,000 sq ft Existing Economic Centers

Source: PACTS: interviews with municipal planners, 2000

Figure 11-4

APPENDIX J

Quality Assurance / Quality Control Information

Quality Assurance / Quality Control Information

Note: The protocols, including quality assurance and quality control measures used in this study, are described in the methods section (Chapter 2) of this report. Where additional information needs to be presented, including the locations of QA/QC data and notes about observers of various techniques (to ensure that data/samples were collected properly) used in this study, are either discussed in the results section or listed below

2.1 Land Use Analysis, Stream Walk, Watershed Survey, and Surficial Geology Investigation

<u>GIS</u>

In a few cases, reach length at a site was collected using a GPS unit in order to save time. In order to gain an estimate of comparability of field- and GIS-gathered information, I measured endpoints of the reach at a study site (LC-M-2.896) (upstream and downstream points) using both a tape measure and also with a GPS unit (Trimble model # TDC1). The results were: 201.5' (tape) vs. 207.7' (GPS), with a difference of 6.2', so the GPS was determined to underestimate linear distance by 3.1% at this site. This information also is useful when estimating the accuracy of sampling site GPS points.

2.2 Biological Community Sampling

Macroinvertebrates

Observers/helpers during standard Maine DEP "rockbag" macroinvertebrate sampling:

- Mary-Ellen Dennis, Maine DEP, Division of Watershed Management, Augusta
- Don Kale, Maine DEP, Division of Watershed Management, Portland

<u>Fish</u>

Observers/helpers during fish sampling:

• John Reynolds, Maine DEP, Division of Environmental Assessment (fish biologist), Augusta

2.3 Water Chemistry and Suspended Solids (Baseflow and Stormflow) Sampling

QA/QC data may be found in the tables in Appendix C or in the appropriate tables in the results section (Chapter 3.3). Observer of one sampling event:

• Don Kale, Maine DEP, Division of Watershed Management, Portland

QA for sample containers:

- All sample containers (field samples, blanks, etc.) were taken from the same batch
- cubitainer batch: 10/22/99 shift 2
- 250-ml containers for nutrient and TSS samples: lot # 355474
- oil and grease bottles were pre-cleaned and certified by ESF

2.4 Water Temperature Monitoring

See Appendix D.

2.5 Hydrology Data Collection

See pre-storm photos of culverts below the flow measurement stations at the end of Appendix L. Surveys (using a surveyor's level and rod) of the ISCO flow meter bubble-line attachment sites, as well as cross-section surveys of the measurement locations, are entered into spreadsheets but have not yet been worked up into figures and tables. For calibration (stage-discharge relationship) data

for the ISCO flow meters, see Appendix E. Occasional technical problems with the ISCO data loggers sometimes limited the number of readings that could be gathered for the calibrations.

Observer of a manually-measured discharge sampling event:

• Don Kale, Maine DEP, Division of Watershed Management, Portland

2.7 Fluvial Geomorphology Assessment

Observers of channel cross-section, gradient, and various Rosgen classification field measurements:

- Jeff Dennis, Maine Department of Environmental Protection, Biologist, Division of Watershed Management, Augusta
- Don Kale, Maine Department of Environmental Protection, Division of Watershed Management, Portland

APPENDIX K

Glossaries

GLOSSARY

Modified from:

- U. S. Environmental Protection Agency. 1997. Volunteer Stream Monitoring: A Methods Manual. EPA 841-B-97-003. Office of Water. http://www.epa.gov/volunteer/stream/
- Fischenich, C. 2000. Glossary of Stream Restoration Terms. EMRRP-SR-01. Prepared for the U. S. Army Corps of Engineers' Ecosystem Management and Restoration Program. http://www.wes.army.mil/el/emrrp/tnotes.html (Only a few terms were taken from this document. See the actual document for more terms.)
- A "JV" indicates that the entry was written by the author of this report.

accuracy - a measure of how close repeated trials are to the desired target.

acidity - a measure of the number of free hydrogen ions (H+) in a solution that can chemically react with other substances.

alkalinity - a measure of the negative ions that are available to react and neutralize free hydrogen ions. Some of most common of these include hydroxide (OH), sulfate (SO4), phosphate (PO4), bicarbonate (HCO3) and carbonate (CO3)

ambient - pertaining to the current environmental condition.

assemblage - the set of related organisms that represent a portion of a biological community (e.g., benthic macroinvertebrates).

bankfull discharge - the stream discharge corresponding to the water stage that first overtops the natural banks. This flow occurs, on average, about once every 1 to 2 years.

benthic - pertaining to the bottom (bed) of a water body.

biochemical oxygen demand (BOD) - the amount of oxygen consumed by microorganisms as they decompose organic materials in water.

biological criteria - numerical values or narrative descriptions that depict the biological integrity of aquatic communities in that state. May be listed in state water quality standards.

buret - a graduated glass tube used for measuring and releasing small and precise amounts of liquid.

catchment - (1) The catching or collecting of water, especially rainfall; (2) a reservoir or other basin for catching water; (3) the water thus caught; (4) a watershed.

channel - the section of the stream that contains the main flow.

channelization - the straightening of a stream; this often is a result of human activity.

chemical constituents - chemical components that are part of a whole.

cobble - medium-sized rocks (210 inches) that are found in a stream bed.

combined sewer overflow (CSO) - sewer systems in which sanitary waste and stormwater are combined in heavy rains; this is especially common in older cities. The discharge from CSOs is typically untreated.

community - the whole of the plant and animal population inhabiting a given area.

culvert - man-made construction that diverts the natural flow of water.

d-frame net - a fine mesh net that is attached to a pole and used for sampling. It resembles a butterfly net.

deionized water - water that has had all of the ions (atoms or molecules) other than hydrogen and oxygen removed.

designated uses - state-established desirable uses that waters should support, such as fishing, swimming, and aquatic life. Listed in state water quality standards.

dissolved oxygen (DO) - oxygen dissolved in water and available for living organisms to use for respiration.

distilled water - water that has had most of its impurities removed.

drainage density - the area of drainage channels facilitating precipitation reaching a waterbody such as a stream; equals stream length/catchment area (JV).

dredge - to remove sediments from the stream bed to deepen or widen the channel.

drift - when stream macroinvertebrates are exposed to a disturbance, they sometimes react by allowing themselves to be passively transported downstream in the water column (JV).

ecoregion - geographic areas that are distinguished from others by ecological characteristics such as climate, soils, geology, and vegetation.

effluent - wastewater discharge.

embeddedness - the degree to which rocks in the streambed are surrounded by sediment.

emergent plants - plants rooted underwater, but with their tops extending above the water.

Erlenmeyer flask - a flask having a wide bottom and a smaller neck and mouth that is used to mix liquids.

eutrophication - the natural and artificial addition of nutrients to a waterbody, which may lead to greatly increased algae production and eventual decay, which then may result in depleted oxygen concentrations. Eutrophication is a natural process that is frequently accelerated and intensified by human activities. (JV)

floating plants - plants that grow free floating, rather than being attached to the stream bed.

flocculent (floc) - a mass of particles that form into a clump as a result of a chemical reaction.

glide/run - section of a stream with a relatively high velocity and with little or no turbulence on the surface of the water.

graduated cylinder - a cylinder used to measure liquids that is marked in units.

gross morphological features - large obvious identifying physical characteristics of an organism.

headwaters - the origins of a stream.

hyporheic zone - the area under the stream channel and floodplain where groundwater and the surface waters of the stream are exchanged freely.

hypoxia - depletion of dissolved oxygen in an aquatic system.

impairment - degradation.

impervious surface - a surface which is impermeable and which does not allow precipitation to infiltrate into the ground; examples include roads, parking lots, sidewalks, and rooftops.

impoundment - a body of water contained by a barrier, such as a dam.

inert - not chemically or physically active.

kick net - a fine mesh net used to collect organisms. Kick nets vary in size, but generally are about three feet long and are attached to two wooden poles at each end.

land uses - activities that take place on the land, such as construction, farming, or tree clearing.

large woody debris- pieces of wood often, but not always defined as being larger than 10 ft long and 6 in diameter (JV).

macroinvertebrate - organisms that lack a backbone and can be seen with the naked eye.

NPDES- National Pollutant Discharge Elimination System, a national program in which pollution dischargers such as factories and sewage treatment plants are given permits to discharge. These permits contain limits on the pollutants they are allowed to discharge.

orthophosphate - inorganic phosphorus dissolved in water.

outfall - the pipe through which industrial facilities and wastewater treatment plants discharge their effluent (wastewater) into a waterbody.

percent total impervious area (PTIA) - the percentage of given area of land (such as a watershed) that is overlain by an impervious material such as asphalt (JV).

periphyton - macro- and micro-algae attached to substrates found on the bottom of aquatic ecosystems; these communities often maintain an intimate association with microbes and an extracellular matrix which all together is sometimes called the Aufwuchs community (JV)

permeable - porous.

pH - a numerical measure of the hydrogen ion concentration used to indicate the alkalinity or acidity of a substance. Measured on a scale of 1.0 (acidic) to 14.0 (basic); 7.0 is neutral.

phosphorus - a nutrient that is essential for plants and animals.

photosynthesis - the chemical reaction in plants that utilizes light energy from the sun to convert water and carbon dioxide into simple sugars. This reaction is facilitated by chlorophyll.

pipet - an eyedropper-like instrument that can measure very small amounts of a liquid.

pool - deeper portion of a stream where water flows slower than in neighboring, shallower portions.

precision - a measure of how close repeated trials are to each other.

protocol - defined procedure.

PTIA - see percent total impervious area (JV).

reagent - a substance or chemical used to indicate the presence of a chemical or to induce a chemical reaction to determine the chemical characteristics of a solution.

riffle - shallow area in a stream where water flows swiftly over gravel and rock.

riparian - of or pertaining to the banks of a body of water.

riparian zone - the vegetative area on each bank of a body of water.

riprap - rocks used on an embankment to protect against bank erosion.

run/glide - see glide/run.

saturated - inundated; filled to the point of capacity or beyond.

sheen - the glimmering effect that oil has on water as light is reflected more sharply off the surface.

sieve bucket - a bucket with a screen bottom that is used to wash macroinvertebrate samples and to remove excess silt and mud.

silviculture - forestry and the commercial farming of trees.

submergent plants - plants that live and grow fully submerged under the water.

substrate - refers to a surface. This includes the material comprising the stream bed or the surfaces to which plants or animals may attach or live upon.

taxon (plural: taxa) - a level of classification within a scientific system that categorizes living organisms based on their physical characteristics.

taxonomic key - a quick reference guide used to identify organisms. They are available in varying degrees of complexity and detail.

titration - the addition of small, precise quantities of a reagent to a sample until the sample reaches a certain endpoint. Reaching the endpoint is usually indicated by a color change.

tolerance - the ability to withstand a particular condition, e.g., pollution-tolerant indicates the ability to live in polluted waters.

tributaries - a body of water that drains into another, typically larger, body of water.

turbidity - murkiness or cloudiness of water, indicating the presence of some suspended sediments, dissolved solids, natural or manmade chemicals, algae, etc.

volumetric flask - a flask that holds a predetermined amount of liquid.

water quality criteria - maximum concentrations of pollutants that are acceptable, if those waters are to meet water quality standards. Listed in state water quality standards.

water quality standards - written goals for state waters, established by each state and approved by EPA.

